Affine Anosov Diffeomorphims of Affine Manifolds
نویسنده
چکیده
̂ M of the connection ∇M to the universal cover ̂ M of M is a locally flat connection. The affine structure of ̂ M is defined by a local diffeomorphism DM : ̂ M → R called the developing map. The developing map gives rise to a representation hM : π1 M → Aff R called the holonomy. The linear part L hM of hM is the linear holonomy. The affine manifold M,∇M is complete if and only if DM is a diffeomorphism. This means also that the connection ∇M is geodesically complete. A diffeomorphism f of M is called an Anosov diffeomorphism f if and only if there exists a norm ‖·‖ on M associated to a differentiable metric 〈·, ·〉, a real number 0 < λ < 1 such that the tangent bundle TM ofM is the direct summand of two bundles TM and TM called, respectively, the stable bundle and the unstable bundle such that
منابع مشابه
Design of a Novel Framework to Control Nonlinear Affine Systems Based on Fast Terminal Sliding-Mode Controller
In this paper, a novel approach for finite-time stabilization of uncertain affine systems is proposed. In the proposed approach, a fast terminal sliding mode (FTSM) controller is designed, based on the input-output feedback linearization of the nonlinear system with considering its internal dynamics. One of the main advantages of the proposed approach is that only the outputs and external state...
متن کاملPseudo-anosov Homeomorphisms with Quadratic Expansion
We show that if f : M →M is a pseudo-Anosov homeomorphism on an orientable surface with oriented unstable manifolds and a quadratic expanding factor, then there is a hyperbolic toral automorphism on T2 and a map h : M → T2 such that h is a semi-conjugacy and (M, h) is a branched covering space of T2. We also give another characterization of pseudo-Anosov homeomorphisms with quadratic expansion ...
متن کاملGlobal Rigidity of Higher Rank Anosov Actions on Tori and Nilmanifolds
An Anosov diffeomorphism f on a torus T is affine if f lifts to an affine map on R. By a classical result of Franks and Manning, any Anosov diffeomorphism g on T is topologically conjugate to an affine Anosov diffeomorphism. More precisely, there is a homeomorphism φ : T → T such that f = φ◦g◦φ−1 is an affine Anosov diffeomorphism. We call φ the Franks-Manning conjugacy. The linear part of f is...
متن کاملRealization of locally extended affine Lie algebras of type $A_1$
Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...
متن کاملAFFINE SUBGROUPS OF THE CLASSICAL GROUPS AND THEIR CHARACTER DEGREES
In this paper we describe how the degrees of the irreducible characters of the affine subgroups of the classical groups under consideration can be found inductively. In [4] Gow obtained certain character degrees for all of the affine subgroups of the classical groups. We apply the method of Fischer to the above groups and, in addition to the character degrees given in [4], we obtain some ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2008 شماره
صفحات -
تاریخ انتشار 2008